Diffusion dependent cell behavior in microenvironments.

نویسندگان

  • Hongmei Yu
  • Ivar Meyvantsson
  • Irina A Shkel
  • David J Beebe
چکیده

Understanding the interaction between soluble factors and cells in the cellular microenvironment is critical to understanding a wide range of diseases. Microchannel culture systems provide a tool for separating diffusion and convection based transport making possible controlled studies of the effects of soluble factors in the cellular microenvironment. In this paper we compare the proliferation kinetics of cells in traditional culture flasks to those in microfluidic channels, and explore the relationship between microchannel geometry and cell proliferation. PDMS (polydimethylsiloxane) microfluidic channels were fabricated using micromolding methods. Fall armyworm ovarian cells (Sf9) were homogeneously seeded in a series of different sized microchannels and cultured under a no flow condition. The proliferation rates of Sf9 cells in all of the microchannels were slower than in the flask culture over the first 24 h of culture. The proliferation rates in the microchannels then continuously decreased reaching 5% of that in the flasks over the next 48 h and maintained this level for 5 days. This growth inhibition was reversible and influenced only by the cell seeding density and the channel height but not the channel length or width. One possible explanation for the observed dimension-dependent cell proliferation is the accumulation of different functional molecules in the diffusion dominant microchannel environment. This study provides insights into the potential effects of the diffusion of soluble factors and related effects on cell behavior in microenvironments relevant to the emerging use of microchannel culture systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Bioinspired materials for controlling stem cell fate.

Although researchers currently have limited ability to mimic the natural stem cell microenvironment, recent work at the interface of stem biology and biomaterials science has demonstrated that control over stem cell behavior with artificial microenvironments is quite advanced. Embryonic and adult stem cells are potentially useful platforms for tissue regeneration, cell-based therapeutics, and d...

متن کامل

Multiparametric Classification Links Tumor Microenvironments with Tumor Cell Phenotype

While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we de...

متن کامل

STAT3 as a Key Factor in Tumor Microenvironment and Cancer Stem Cell

Background Recent studies revealed that tumor-associated macrophages (TAMs) play a decisive role in the regulation of tumor progression by manipulating tumor oncogenesis, angiogenesis and immune functions within tumor microenvironments. Signal transducer and activator of transcription 3 (STAT3), which is a point of convergence for numerous oncogenic signalling pathways, is constitutively activ...

متن کامل

Defining the Subcellular Interface of Nanoparticles by Live-Cell Imaging

Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 5 10  شماره 

صفحات  -

تاریخ انتشار 2005